3,333 research outputs found

    A Contrast/Filling-In Model of 3-D Lightness Perception

    Full text link
    Wallach's ratio hypothesis states that local luminance ratios clr!termine lightness perception under variable illumination. While local luminance ratios successfully discount gradual variations in illumination (illumination constancy or Type I constancy), they fail to explain lightness constancy in general. Some examples of failures of the ratio hypothesis include effects suggesting the coplanar ratio hypothesis (Gilchrist 1977), "assimilation" effects, and configural effects such as the Benary cross, and White's illusion. The present article extends the Boundary Contour System/Feature Contour System (BCS/FCS) approach to provide an explanation of these effects in terms of a neural model of 3-D lightness perception. Lightness constancy of objects in front of different backgrounds (background constancy or Type II constancy) is used to provide functional constraints to the theory and suggest a contrast negation hypothesis which states that ratio measures between coplanar regions are given more weight in the determination of lightness. Simulations of the model applied to several stimuli including Benary cross and White's illusion show that contrast negation mechanisms modulate illumination constancy mechanisms to extend the explanatory power of the model. The model is also used to devise new stimuli that test theoretical predictions

    ART-EMAP: A Neural Network Architecture for Learning and Prediction by Evidence Accumulation

    Full text link
    This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (AFOSR-90-0083, ONR-N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0083

    Incremental Art: A Neural Network System for Recognition by Incremental Feature Extraction

    Full text link
    Abstract Incremental ART extends adaptive resonance theory (ART) by incorporating mechanisms for efficient recognition through incremental feature extraction. The system achieves efficient confident prediction through the controlled acquisition of only those features necessary to discriminate an input pattern. These capabilities are achieved through three modifications to the fuzzy ART system: (1) A partial feature vector complement coding rule extends fuzzy ART logic to allow recognition based on partial feature vectors. (2) The addition of a F2 decision criterion to measure ART predictive confidence. (3) An incremental feature extraction layer computes the next feature to extract based on a measure of predictive value. Our system is demonstrated on a face recognition problem but has general applicability as a machine vision solution and as model for studying scanning patterns.Office of Naval Research (N00014-92-J-4015, N00014-92-J-1309, N00014-91-4100); Air Force Office of Scientific Research (90-0083); National Science Foundation (IRI 90-00530

    ART-EMAP: A Neural Network Architecture for Object Recognition by Evidence Accumulation

    Full text link
    A new neural network architecture is introduced for the recognition of pattern classes after supervised and unsupervised learning. Applications include spatio-temporal image understanding and prediction and 3-D object recognition from a series of ambiguous 2-D views. The architecture, called ART-EMAP, achieves a synthesis of adaptive resonance theory (ART) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). ART-EMAP extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage 1 introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Each ART-EMAP stage is illustrated with a benchmark simulation example, using both noisy and noise-free data. A concluding set of simulations demonstrate ART-EMAP performance on a difficult 3-D object recognition problem.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0083

    3-D Object Recognition by the ART-EMAP Evidence Accumulation Network

    Full text link
    ART-EMAP synthesizes adaptive resonance theory (AHT) and spatial and temporal evidence integration for dynamic predictive mapping (EMAP). The network extends the capabilities of fuzzy ARTMAP in four incremental stages. Stage I introduces distributed pattern representation at a view category field. Stage 2 adds a decision criterion to the mapping between view and object categories, delaying identification of ambiguous objects when faced with a low confidence prediction. Stage 3 augments the system with a field where evidence accumulates in medium-term memory (MTM). Stage 4 adds an unsupervised learning process to fine-tune performance after the limited initial period of supervised network training. Simulations of the four ART-EMAP stages demonstrate performance on a difficult 3-D object recognition problem.Advanced Research Projects Agency (ONR N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-1309); Air Force Office of Scientific Research (90-0083

    A Neural Theory of Visual Search: Recursive Attention to Segmentations and Surfaces

    Full text link
    A neural theory is proposed in which visual search is accomplished by perceptual grouping and segregation, which occurs simultaneous across the visual field, and object recognition, which is restricted to a selected region of the field. The theory offers an alternative hypothesis to recently developed variations on Feature Integration Theory (Treisman, and Sato, 1991) and Guided Search Model (Wolfe, Cave, and Franzel, 1989). A neural architecture and search algorithm is specified that quantitatively explains a wide range of psychophysical search data (Wolfe, Cave, and Franzel, 1989; Cohen, and lvry, 1991; Mordkoff, Yantis, and Egeth, 1990; Treisman, and Sato, 1991).Air Force Office of Scientific Research (90-0175); Defense Advanced Research Projects Agency (AFOSR 90-0083, ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100); British Petroleum (89-A-1204); National Science Foundation (IRI-90-00530

    A Neural Theory of Attentive Visual Search: Interactions of Boundary, Surface, Spatial, and Object Representations

    Full text link
    Visual search data are given a unified quantitative explanation by a model of how spatial maps in the parietal cortex and object recognition categories in the inferotemporal cortex deploy attentional resources as they reciprocally interact with visual representations in the prestriate cortex. The model visual representations arc organized into multiple boundary and surface representations. Visual search in the model is initiated by organizing multiple items that lie within a given boundary or surface representation into a candidate search grouping. These items arc compared with object recognition categories to test for matches or mismatches. Mismatches can trigger deeper searches and recursive selection of new groupings until a target object io identified. This search model is algorithmically specified to quantitatively simulate search data using a single set of parameters, as well as to qualitatively explain a still larger data base, including data of Aks and Enns (1992), Bravo and Blake (1990), Chellazzi, Miller, Duncan, and Desimone (1993), Egeth, Viri, and Garbart (1984), Cohen and Ivry (1991), Enno and Rensink (1990), He and Nakayarna (1992), Humphreys, Quinlan, and Riddoch (1989), Mordkoff, Yantis, and Egeth (1990), Nakayama and Silverman (1986), Treisman and Gelade (1980), Treisman and Sato (1990), Wolfe, Cave, and Franzel (1989), and Wolfe and Friedman-Hill (1992). The model hereby provides an alternative to recent variations on the Feature Integration and Guided Search models, and grounds the analysis of visual search in neural models of preattentive vision, attentive object learning and categorization, and attentive spatial localization and orientation.Air Force Office of Scientific Research (F49620-92-J-0499, 90-0175, F49620-92-J-0334); Advanced Research Projects Agency (AFOSR 90-0083, ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100); Northeast Consortium for Engineering Education (NCEE/A303/21-93 Task 0021); British Petroleum (89-A-1204); National Science Foundation (NSF IRI-90-00530

    On the Calculation of the Exponential Bound Parameter for Phase Quantized 8-PSK

    Get PDF
    The exponential bound parameter is numerically evaluated for 16-zone quantized 8-PSK for signal vectors bisecting decision regions and for signal vectors lying on decision boundaries. For decision regions of equal span, signal vectors lying on decision boundaries are superior, confirming the result of Parsons and Wilson (1990). Signal vectors bisecting decision regions are superior if span of decision regions not containing signal vectors is optimized. Using the partial derivative, it is shown that the optimal configuration depends on SNR. Furthermore, the optimal configuration is not necessarily one in which the decision boundaries are straight lines
    • …
    corecore